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Vibrations of drums with self-similar~fractal! boundaries are investigated in terms of large-scale simula-
tions, for elucidating the characteristics of their spectral densities of states. It is found that the integrated
density of statesDI ~v! is proportional tovDf ~Df the fractal dimension of the boundary! in the frequency
regime higher than a characteristic frequencyvc with oscillating but small amplitude. The frequencyvc is
related to the length scale characterizing the fractal boundary. We show that there exist edge modes localized
near the fractal boundary under the stress-free boundary condition~Neumann condition!, which vibrate at both
ends of the drum with antiphase.@S1063-651X~96!06808-0#

PACS number~s!: 03.40.Kf, 63.50.1x, 68.35.Ja, 71.55.Jv

I. INTRODUCTION

The concept of fractals is crucial for describing dynamic
as well as static properties of complex geometries@1–4#.
There are two types of fractal systems showing peculiar vi-
brational properties, mass fractals and structures with fractal
perimeters. The first mainly concerns harmonic vibrations
called fractons@5#. The second one is related to vibrations
excited in systems with fractal perimeters@6#. These systems,
so-called fractal drums, have significant physical implica-
tions, i.e., water waves in a lake~seiches!, acoustic waves in
a concert hall with irregular walls, vibrations of fluid in po-
rous media, and oscillations of the whole earth. The asymp-
totic properties of the integrated densities of states~IDOS! of
fractal drums, in the high frequency limit, have been dis-
cussed from mathematical points of view@7–10#. Thus frac-
tal drums have attracted great interest of both physicists and
mathematicians. A conjecture@7# was given that the fractal
dimensionDf of the perimeter is relevant to the IDOS of the
drum. This is called the Berry-Lapidus~BL! conjecture. The
BL conjecture has been numerically studied for the first time
by Sapovalet al. @6,11–13# via calculations of the IDOS of
the fractal drum with the Koch-curve boundary~Koch drum!
at the second generation withDf51.5. They used a mapping
relation between the Helmholtz and the diffusion equations.
They calculated eigenfrequencies~and their distribution! and
the corresponding eigenfunctions of the Koch drum. Al-
though their method employed can find accurate eigenfre-
quencies and the eigenstates, only a small part of lower
eigenfrequencies and their eigenstates were obtained due to
the limitation of the CPU time. In fact, they have calculated
only 3% of all eigenmodes. In order to obtain correct insight
into the characteristics of the IDOS, the sufficient generation
of a fractal drum reflecting the fractality of the boundary and
the calculation of the IDOS at high enough eigenfrequencies
are necessary.

Hobiki, Yakubo, and Nakayama@14# have recently stud-
ied the IDOS’s of Koch drums at the third and fifth genera-
tions by employing a simple but powerful and accurate nu-
merical method. They have calculated the IDOS in two
orders of the frequency range, and found that the IDOS
DI ~v! is proportional tovDf with Df51.5 in the frequency
regime higher than a characteristic frequencyvc . This result
is valid for drums with the Koch-curve boundary. The spec-

tral distribution is sensitive to the shape of the boundary.
Whether the BL conjecture holds for other shaped drums has
not yet been clarified.

The purpose of this paper is to investigate the character-
istics of the IDOS of drums other than the Koch drum with
Df51.5 via large-scale simulations. We take two types of
fractal drums at high generations. It will be shown that the
IDOS’sDI~v! are proportional tovDf ~Df the fractal dimen-
sion! in the frequency regime higher than a characteristic
frequencyvc related to the length scale characterizing the
fractal boundary with oscillating but small amplitude.

The organization of this paper is as follows: Sec. II de-
scribes the basic concept of the BL conjecture related to
vibrational properties of fractal drums. In Sec. III, the appli-
cability of the conjecture for discretized lattice systems is
discussed. We argue in detail this point by illustrating a
square drum~0th generation!, namely, about the Weyl-
Seeley-Pham@15–17# asymptotic formula. The comparison
of the exact expression for the IDOS of this system with the
computed result will convince us to use the formula of Eq.
~8! for investigating the BL conjecture. In Sec. IV, we out-
line our numerical method, called the forced oscillator
method, which is employed to calculate the densities of
states and mode patterns. The method is quite powerful to
treat eigenvalue problems of very large matrices, by mapping
them onto those of lattice systems. The numerical results are
given in Sec. V. Section VI gives summary and discussions.

II. ASYMPTOTIC FORMULAS FOR THE SPECTRAL
DISTRIBUTION OF DRUMS WITH SMOOTH

AND FRACTAL PERIMETERS

We consider, at first, vibrations of drums with fixed
boundary condition~Dirichlet condition!. Let R be an arbi-
trary shaped bounded region. The starting equation describ-
ing vibrations of drums is expressed by the Helmholtz equa-
tion,

~D1v2!u~r !50 in R, ~1!

where v is the eigenfrequency~or v2 the eigenvalue!, D
denotes the Laplacian, andu~r ! is the scalar displacement.
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The Helmholtz equation~1! appears in various fields of
physics, to describe not only propagations of electromagnetic
and acoustic waves, but also energy spectra of electronic
systems since Eq.~1! is equivalent to the Schro¨dinger equa-
tion. Eigenfrequencies consist of an infinite sequence of
positive quantities. The lowest frequencyv1 is called the
fundamental tone and higher frequencies are overtones of the
drum. The integrated density of states~IDOS! represents the
number of eigenfrequencies of Eq.~1! up to v, which is
given by

I fix~v!5E
0

v

D~v8!dv8. ~2!

The density of states is defined byD~v!5(ld~v2vl!, where
d(x) is the Dirac delta function andvl the eigenfrequency.
The suffix ‘‘fix’’ of Eq. ~2! represents the IDOS under the
fixed boundary condition~Dirichlet condition!.

Seeley@16# and Pham@17# have obtained, by extending
the Weyl’s asymptotic formula@15#, the following asymp-
totic form of the IDOS for drums with the smooth boundary
in the high frequency limit,

I fix~v!5
S

4p
v22Bv1o~v! ~v→`!, ~3!

whereS is the area of the drum andB a positive constant
depending on a shape of the drum.o~v! denotes the Landau
symbol. We call this the Weyl-Seeley-Pham~WSP! asymp-
totic formula. The first term of the right-hand side of Eq.~3!
is the IDOS for a drum with the stress-free boundary~Neu-
mann condition! in the high frequency limit. The second
term is due to the vanishing degree of freedom by imposing
the fixed boundary condition~Dirichlet condition!. This term
depends on the shape of the boundary and should be propor-
tional to v for a one-dimensional~1D! and smooth perim-
eter.

The WSP asymptotic formula Eq.~3! assumes the smooth
boundary. However, there are many drums and resonators
possessing irregular and structurally disordered boundaries.
Berry @7# and Lapidus@8–10# have extended the formula Eq.
~3! to the case with a fractal boundary whose fractal dimen-
sion is expressed byDf . Berry @7# has conjectured that the
IDOS I fix~v! of a fractal drum with the fixed boundary~Di-
richlet! condition should have the following frequency de-
pendence in the high frequency limit:

I fix~v!5
S

4p
v22Bfv

Df1o~vDf ! ~v→`!, ~4!

whereS is the area of the drum andBf a positive constant
depending on the shape of the drum. This expression is
called the Berry-Lapidus~BL! conjecture. The BL conjecture
is based on the following assumptions: Vibrational modes
of a drum with the stress-free boundary~Neumann! condi-
tion can be separated into the inside and the boundary parts,
and vibrational modes related to the boundary have the linear
dispersion relation. Quite recently, Levitin and Vassiliev@18#
and Fleckinger, Levitin, and Vassiliev@19# have pointed out
that the factorBf is an oscillating function of frequencyv
but with a small amplitude. This will be argued in Sec. V in
connection with our numerical results.

III. THE CONJECTURE FOR LATTICE SYSTEMS

Equations~3! and ~4! assume that the drum consists of a
continuum medium. We need to discretize the continuum
drum to a lattice~or grid! system for real space numerical
investigation. For this, Eqs.~3! and ~4! are inapplicable di-
rectly because the discretized drum possesses a characteristic
length, namely, a grid spacinga. This length scale becomes
relevant in the high frequency limit. At first, we extend Eqs.
~3! and~4! for discretized systems. The validity of this modi-
fication will be demonstrated by calculating numerically the
IDOS for a discretized square drum, for which we have the
rigorous dispersion relation.

Let us consider a simple square drum. The side length of
the square drum is taken to beL ~see the inset of Fig. 1!, for
which the dimension of the boundary becomesDf51. The
dispersion relation of the discretized square drum obeys the
following form:

v254~K/m! (
a5x,y

sin2~kaa/2!, ~5!

wherem is a mass of a lattice point,K a spring constant, and
ka the wave number along thea direction. Hereafter, we use

FIG. 1. The differenceDI ~v! for the square drum withn52000
as a function of frequencyv. The symboln is the number of grid
points at a sideL of the square drum. Schematic illustration of the
discretized square drum is given in the inset. We use the system of
unitsm51, K51, anda51. The results given in~a! and ~b! are
obtained by using Eqs.~7! and ~8!, respectively. The difference
DI ~v! in ~b! is proportional tov even in the higher frequency
regime compared with the case of~a!.
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the system of unitsm51, K51, anda51 without loss of
generality. Under thefixed boundary condition, the wave
numberska are given by

ka5
pp

n21
; for p51,2,...,n22, ~6!

wheren is the number of grid points on the side, i.e.,L5(n
21)a ~see the inset of Fig. 1!. Eigenfrequenciesv are ob-
tained by substituting the wave numberska given by Eq.~6!
into Eq. ~5!, and the IDOSI fix~v! is calculated from the
spectral distribution of eigenfrequenciesv.

We replace the second term of Eq.~3! by DI ~v! defined
by

DI ~v!5
L2

4p
v22I fix~v!. ~7!

The differenceDI ~v! for a square drum withL51999
~namely,n52000! is calculated by putting the rigorous result
for I fix~v! into Eq. ~7!. The data~a! in Fig. 1 show the fre-
quency dependence ofDI ~v! obtained using Eq.~7!. The
differenceDI ~v! is not proportional tov in the frequency
regime higher thanv'0.1. This indicates that the IDOS for
the discretized drum under the stress-free boundary condition
is not expressed by the first termL2v2/4p of Eq. ~7! in this
high frequency regime. This arises from the fact that our
drum possesses a finite grid spacinga. Thus the IDOS for
the discretized drum obeys the WSP conjecture@Eq. ~3!#
only in a very narrow frequency region.

The first term of Eq.~3! represents the IDOS for a con-
tinuum drum with the stress-free boundary. Therefore, we
replace the first term of Eq.~7! by the IDOSI free~v! for a
discretized system with the stress-free boundary,

DI ~v!5I free~v!2I fix~v!. ~8!

In the case of the discretized square drum with the stress-free
boundary, the dispersion relation becomes the same with Eq.
~5!, but the wave numbers are expressed by

ka85
p8p

n22
; for p850,1,2,...,n21. ~9!

Equations~5!, ~6!, and ~9! lead the rigorous form of the
differenceDI ~v! of Eq. ~8! for the discretized square drum.
The result is shown by the data~b! in Fig. 1. This shows
clearly thatDI ~v! is proportional tov even in the higher
frequency regime~over two orders of frequency range! com-
pared with the case of the data~a!. Thus we can properly
replace the first term of the WSP asymptotic formula~3!
with the IDOSI free~v! of the discretized system. Extending
this idea, we claim the following relation to be the dis-
cretized version of the BL conjecture,

I fix~v!5I free~v!2Bfv
Df . ~10!

IV. OUTLINE OF NUMERICAL METHOD

The method employed for calculations of the densities of
states~DOS! and eigenmodes is the forced oscillator method
~FOM! @20–23#. This method is based on the principle that a
linear dynamical system driven by a periodic external force

of frequencyV will respond with large amplitudes in those
eigenmodes close to this frequency. This method enables us
to calculate in an efficient way the spectral density of states,
eigenvalues, and their eigenvectors of very large Hermitian
@20,21# or non-Hermitian matrices@22#. The algorithm can
treat a system with a size of the order ofN5107 using a
computer with 1 Gbyte memory space. Such a large size
makes it possible to obtain correct insight into the spectral
densities of states of fractal drums.

Let us introduce the Lagrangian of a classical vibrational
system with unit mass of the form,

L5
1

2 (
m

N

u̇m
2 2

1

2 (
mn

Dmnumun1(
m

Fmumcos~Vt !,

~11!

wherem ~andn! represents the grid point on the 2D drum.
um denotes the scalar displacement of themth site andDmn
is the spring constant~the matrix element! between themth
andnth site. The coefficientFm is the amplitude of the ex-
ternal force applied to themth site, andV is the driving
frequency. The first and second terms in Eq.~11! are the
kinetic energy and the potential energy of coupled harmonic
oscillators, respectively, and the third represents the external
field. Varying the frequencyV, the density of states in an
arbitrary range is calculated as follows@20–23#.

The Lagrangian Eq.~11! without the external field yields
the lattice dynamical equation of motion of the form

d2

dt2
um~ t !52(

n
Dmnun~ t !. ~12!

By discretizing timet into stepst, Eq. ~12! becomes coupled
equations,

vm~ i11!5vm~ i !2t(
n

Dmnun~ i !,

um~ i11!5um~ i !1tvm~ i11!, ~13!

wherevm( i ) is the velocity of themth particle at timet5 i t
where the integeri denotes the time in units oft @20#. Each
displacementum( i ) and velocityvm( i ) can be decomposed
into a sum of normal modesem~l! as

um~ i !5(
l

Ql~ i !em~l!,

vm~ i !5(
l

Pl~ i !em~l!, ~14!

whereQl( i ) and Pl( i ) are the time-dependent amplitudes
with which the model contributes toum( i ) andvm( i ), re-
spectively, and vary as exp~2ivlt! as seen from substituting
Eq. ~14! into ~12!. The displacementum( i ) is set to be zero at
i50, then the periodic forcesFm cos(Vt i ) are imposed on
each site m in Eq. ~13!. Here Fm is chosen as
Fm5F0 cos~fm!, wherefm is a random quantity taking a
value within the range 0<fm,2p, andF0 is a constant.

As a next step, we define the energyE( i ) given by
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E~ i !5
1

2 H(
m

@vm~ i !#21(
m

(
n

um~ i !Dmnun~ i !J
5
1

2 (
l

ujl~ i !u2, ~15!

where the orthogonality condition between eigenvectors is
used. We have introduced the quantityjl( i ) defined by
jl( i )[Q̇l( i )1 ivlQl( i ). After a sufficiently large time-
intervalT, jl( i ) becomes from Eqs.~12! and ~14!,

jl~T!'
eivlT

2 H(
m

Fmem~l!J ei ~V2vl!T21

i ~V2vl!
. ~16!

Using Eqs.~15! and ~16!, one has the energy gained by the
external force as,

E~T!5
1

2 (
l

H(
m

Fmem~l!J 2 sin2$~vl2V!T/2%

~vl2V!2
.

~17!

The averaged value ofE(T) over the random variablesfm
becomes

^E~T!&5
F0
2

2 (
l

sin2$~vl2V!T/2%

~vl2V!2

3K (
m

(
n

em~l!en~l!cos~fm!cos~fn!L
5
F0
2

4 (
l

sin2$~vl2V!T/2%

~vl2V!2
, ~18!

where ^•••& represents the random phase average and the
terms satisfyingm5n remain in the summations with re-
spect tom andn. For sufficiently largeT, only the modes
belonging to eigenfrequenciesvl within the narrow fre-
quency range nearV contribute to the sum in Eq.~18!.

For large system sizeN, it is not necessary to average
over all possible ensembles$fm% explicitly due to the self-
average. Provided that the proper time-intervalT is taken,
Eq. ~18! yields

^E~V,T!&5
pTF0

2

8 (
l

d~vl2V!

5
pTNF0

2

8
D~V!, ~19!

whereD~V! is the density of states for the mapped system.
Here we have used the relation limT→` sin

2(xT)/
pTx25d(x). The resonance widthdv is inversely propor-
tional to the timeT, as given bydv.4p/T.

The eigenmodesl are calculated by the following proce-
dures. By applying the external forceFm cos(Vt i ) to the
system, the amplitude ofum( i ) after the time-intervalT can
be written as, using Eqs.~12! and~14! and taking the initial
conditionPl( i50)50,

um~T!5(
l

H(
n

Fnen~l!J
3
2 sin$~V1vl!T/2%sin$~V2vl!T/2%

V22vl
2 em~l!.

~20!

For sufficiently large timeT, only a few eigenmodes with
eigenfrequenciesvl close toV have large amplitudes. One
can accelerate the calculation by replacing the amplitude of
the periodic forceFm at each sitem by Fm5um(T). Initial
amplitudeum( i50) at themth site is set to be zero again,
and we follow the time developments of Eq.~13! with the
new external forceFmcos(Vt i ). After p iterations of this
procedure, the amplitudeum(T) becomes

um
~p!~T!5(

l
H(

n
Fnen~l!J

3F2 sin$~V1vl!T/2%sin$~V2vl!T/2%

V22vl
2 G pem~l!.

~21!

For sufficiently largep, only a single eigenmodel1(vl1

'V) survives such as

um
~p!~T!'Cem~l1!, ~22!

whereC is a constant.
The formula for judging the accuracy of calculated eigen-

vectors has been given in Ref.@21#. The key quantity is

d2~m![
(m$am2m2um

~p!~T!%2

(mam
2 , ~23!

wherem is a parameter andam[(nDmnu n
(p)(T). It is evident

that, if only a single model1 is excited, the value of

FIG. 2. Illustrations of fractal drums. Each generator is given
above.~a! The fractal drum with the Koch-curve perimeter at the
third generationn53. The fractal dimension of the Koch-curve is
Df5ln 8/ln 453/2. ~b! The fractal drum withDf5ln 32/ln 855/3.
The dotted lines shown in~a! and~b! indicate the initiators~square
drum!.
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d2(vl1
) becomes zero. When the excited pattern consists of

a few modes with eigenfrequencies close to the modevl1
,

d becomes small when the frequencym is close tovl1
.

Therefored~m! gives an index for the degree of accuracy.
We should stress the following advantages to compute the

DOS in terms of the FOM:~i! Calculations can be performed
within an arbitrary energy range one needs,~ii ! the energy

resolution can be controlled by taking the appropriate time-
interval T, ~iii ! the CPU time is proportional to the system
sizeN, and~iv! the accuracy of the calculated DOS increases
with increasing the system sizeN.

V. NUMERICAL RESULTS

We have computed the IDOS’s of two different Koch
drums as illustrated in Figs. 2~a! and~b!. The fractal dimen-
sions of boundaries in Figs. 2~a! and ~b! are Df53/2 and
Df55/3, respectively. The indexn indicates the generation
of the fractal boundary, where the total length of perimeter
increases with the generation. The symbolsl andL show the
lengths of the segment at the fractal boundary and the system
size, respectively. The lengthl is taken to be larger than the
grid spacinga, namely, we have chosen the values ofl as
l529a and 24a for the drums A@Fig. 2~a!# and B @Fig.
2~b!#, respectively. These fractal drums consist of the grid
points ofN includingNp sites on the perimeter. Table I gives
the parameters used in our computations.

The differenceDI ~v! has been calculated from both
I free~v! and I fix~v! by using the formula Eq.~8!. The reso-
nance widthdv54p/T is taken to be proportional to the
frequencyv, namely, the time-intervalT for our simulations
is taken as

FIG. 3. The IDOS’sI free~v! and I fix~v!, for the drum A as a
function of frequencyv with error bars. We use the system of units
m51, K51, anda51. The results show the averaged IDOS’s over
four sets of$fm%. Open circles and crosses indicate the IDOS’s of
drums with the free~Neumann! and fixed~Dirichlet! boundary con-
ditions, respectively. Filled circles indicate the differenceDI ~v!
which is proportional tov1.5 (5vDf) in the frequency regime
higher than a characteristic frequencyvc . In the frequency regime
lower thanvc , DI ~v! does not follow the power-law dependence
vDf.

FIG. 4. The IDOS’sI free~v! andI fix~v!, for the fractal drum B as
a function of frequencyv with error bars, wherem51, K51, and
a51. The results show the averaged IDOS’s over six sets of$fm%.
The definitions of symbols are the same with those given in Fig. 3.
The differenceDI ~v! is proportional tov1.67 in the frequency re-
gime higher than a characteristic frequencyvc .

TABLE I. Parameters used in our numerical simulations. Drums
A andB are illustrated in Figs. 2~a! and ~b!, respectively. DrumC
is the Koch drum at the first generationn51, which is employed for
calculating the localized edge mode.

drumA drumB drumC

Df 3/2 5/3 3/2
n 3 2 1
l 29a 24a 49a
L 3074a 2832a 294a
N 3 474 433 2 408 449 39 201
Np 59 392 98 304 1568
Np/N 0.0171 0.0408 0.0400
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T5
4p

dv
5
16p

v
. ~24!

This choice enables us to have a constant frequency resolu-
tion of the DOS when plotting the data in a log-log scale. We
have taken the sample average of four to six sets of random
variables$fm%.

A. Integrated density of states

The dispersion relation of a lattice system deviates signifi-
cantly from the linear law in the high frequency region. Due
to this reason, we evaluate the IDOS in the frequency regime
v&1.0 as argued in Sec. III. Figure 3 shows our numerical
results on the frequency dependence of the IDOS for the
drum A with the fractal dimensionDf53/251.5 @Fig. 2~a!#,
where the average is taken over four sets of$fm%. Open
circles and crosses indicate the IDOS’s of drums with free
and fixed boundary conditions, respectively. Filled circles
with error bars are the results for the differenceDI ~v! com-
puted from Eq.~8!. Figure 3 gives clear evidence that the
differenceDI ~v! is proportional tov1.5 in the frequency re-
gime higher than a characteristic frequencyvc . Hereafter,
we call vibrational modes of a drum with the fixed boundary
‘‘bulk modes’’ and modes in the boundary region ‘‘edge
modes.’’ The total number of edge modes is small compared
with that of bulk modes. In fact, the degree of freedom of the
perimeter (Np) is a few percent of that of the whole drum
(N) in our calculations~see Table I!.

The physical implication on the characteristic frequency
vc can be given by comparing the length scale of the wave-
lengthl and the segment lengthl at the perimeter as follows:
The BL conjecture is based on the assumption that vibrations
of a drum with the stress-free boundary can be separated into
the bulk and the edge modes. In addition, the assumption of
the linear dispersion relation for the edge modes is not ap-
propriate. This implies that the BL conjecture is not valid in
the low frequency region such asl/l@1. We claim that the
characteristic frequencyvc is related to the excited mode

with the wavelengthl'2l . Sincel529a for the drum A,vc

of this drum should become 0.153 which is calculated from
the dispersion relation. This value agrees quite well with the
characteristic frequencyvc obtained in Fig. 3, which indi-
cates, contrary to Ref.@7# that Eq.~10! holds when the wave-
lengthsl of vibrational excitations of a fractal drum are
shorter than the length scalel characterizing the fractal pe-
rimeter.

We have also computed the IDOS of the drum B with the
different fractal perimeter@see Fig. 2~b!#, for which the frac-
tal dimension of the boundary isDf55/3.1.67. In order to
obtain high enough accuracy of the DOS, the time-intervalT
is taken asT54p/dv530p/v. The calculated results are
shown in Fig. 4, where the average is taken over six sets of
random variables$fm%. The definitions of symbols in Fig. 4
are the same with those given in Fig. 3. Since the length of
the fractal segmentl is taken to be 24a ~see Table I!, the
characteristic frequencyvc should become 0.185. This coin-
cides with the calculated value indicated in Fig. 4. The result
shows thatDI ~v! is proportional tov1.67 in the high fre-
quency regionv.vc . In the lower frequency regime than
vc , DI ~v! does not follow the power-law dependencev1.67.
The important feature of the calculated results in Fig. 4 is the
oscillating behavior of theDI ~v! vc. This feature is also
observed for the case of the drum A as shown in Fig. 3. This
point will be argued later.

B. Mode patterns

We have demonstrated that Eq.~10! holds under the con-
dition that the wavelengthsl of vibrational excitations are
shorter than the length scalel characterizing the fractal pe-
rimeter. We have computed mode patterns localized near the
fractal boundary of a fractal drum with the stress-free bound-
ary. These provide one of evidences supporting the validity
of the BL conjecture.

The method employed for calculating mode patterns is the
forced oscillator method@20–23# mentioned in Sec. III. We
use a Koch drum at the first generation with the stress-free

FIG. 5. The eigenmode
with the eigenfrequency
v50.498 068 61 for the Koch
drum ~n51! with the stress-free
boundary condition. Large ampli-
tudes are observed at both ends of
the drum.
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boundary condition. The parameters of the drum arel549a,
L5294a, N539 201, andNp51 568 ~see Table I!. We
choose the large number of grid points at the perimeter such
as l549a, in order to clarify the characteristics of eigen-
modes. Using these values of parameters and the dispersion
relation, the characteristic frequencyvc of the Koch drum is
estimated to be 0.09. The calculated result is shown in Fig. 5,
where the mode pattern with the eigenfrequency
v50.498 068 61 is presented. The value of the quantityd~m!
introduced in Eq.~23! for the judgement of the purity of the
eigenmode is 0.8531026. Figure 5 shows that the mode vi-
brates with large amplitudes at both ends of the drum with
antiphase. The displacements near the boundary are larger
than those in other regions, and the displacements decrease
toward the inside of the drum. We have plotted the amplitude
of this mode in Fig. 6, where a cross section along thex axis
defined in the inset is given. For 1<x&50, the amplitudes
are large compared with those in the regionx*50. It should
be noted that the mode vibrates sinusoidally along they axis.
These edge modes are not extended along the perimeter. This
feature is in contrast to the case of a drum with the smooth
boundary, where edge modes are extended along the perim-
eter.

VI. SUMMARY AND DISCUSSIONS

We have investigated vibrational characteristics of drums
with self-similar boundaries via large-scale simulations, pay-
ing attention to the BL conjecture on the spectral distribu-

tion. The applicability of the conjecture for discretized sys-
tems has been argued in detail. We have used the formula
Eq. ~10! for discretized drums instead of the conjecture Eq.
~4! for continuum media. We have demonstrated the validity
of the formula~10! proposed in the present paper for the case
of a square drum with the smooth perimeter, i.e., the calcu-
lated IDOS coincides fairly well with the WSP asymptotic
formula ~3!. The IDOS’s of fractal drums with the fractal
dimensions of the perimetersDf53/2 andDf55/3 have been
computed. The results show thatI fix~v! obeys Eq.~10! in the
frequency regime higher thanvc , wherevc is related to the
length scalel characterizing the fractal perimeter. The crite-
rion for the validity of Eq.~10! has become clear, namely,
the conjecture holds for modes with wavelengthsl shorter
than the length scalel characterizing the fractality of the
perimeter. Figure 5 gives eigenmode localized at the fractal
~stress-free! boundary of the Koch drum~n51! with the frac-
tal dimensionDf53/2 of the perimeter.

Recently, Levitin and Vassiliev@18# and Fleckinger, Lev-
itin, and Vassiliev@19# have pointed out that the BL conjec-
ture Eq. ~4! for fractal drums is not rigorous. They have
suggested@18,19# that the coefficientBf in Eqs.~4! and~10!
is an oscillating function of frequencyv, but the amplitude is
very small. We have tried to reveal this behavior. The oscil-
lation with small amplitudes has been observed as shown in
Figs. 3 and 4 within our numerical accuracy. The problem
suggested by Levitin and co-workers@18,19# will be crucial
for further development on the present subject.

Our results are applicable to various fields of physics due
to the generality of Eq.~1!. One example concerns with elec-
tronic states in tailor-made mesoscopic systems with fractal
perimeters@24,25#. Advances in nanostructure technology
make possible the manufacture of such mesoscopic systems.
Electrons confined in a 2D small region will be severely
affected by the shape of the perimeter@26#. Studies on fractal
drums will give an insight into electronic properties of me-
soscopic systems.
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