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Spectral characteristics in resonators with fractal boundaries
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Vibrations of drums with self-similatfracta) boundaries are investigated in terms of large-scale simula-
tions, for elucidating the characteristics of their spectral densities of states. It is found that the integrated
density of states\l (w) is proportional tow®f (D¢ the fractal dimension of the boundarin the frequency
regime higher than a characteristic frequenrgywith oscillating but small amplitude. The frequenay is
related to the length scale characterizing the fractal boundary. We show that there exist edge modes localized
near the fractal boundary under the stress-free boundary cong@iteurmann condition which vibrate at both
ends of the drum with antiphasg51063-651X96)06808-0

PACS numbes): 03.40.Kf, 63.50+x, 68.35.Ja, 71.55.Jv

I. INTRODUCTION tral distribution is sensitive to the shape of the boundary.
Whether the BL conjecture holds for other shaped drums has
The concept of fractals is crucial for describing dynamicnot yet been clarified.
as well as static properties of complex geometfis4]. .The purpose of this paper is to investigate the charaqter—
There are two types of fractal systems showing peculiar viistics of the IDOS of drums othgr than the Koch drum with
brational properties, mass fractals and structures with fractdP¢=1.5 via large-scale simulations. We take two types of
perimeters. The first mainly concerns harmonic vibrationgractal drums at high generations. It will be shown that the
called fractong5]. The second one is related to vibrations IDOS’s Al(«w) are proportional tav™ (D the fractal dimen-
excited in systems with fractal perimet§6. These systems, Sion in the frequency regime higher than a characteristic
so-called fractal drums, have significant physical implica-Tedueéncyw. related to the length scale characterizing the
tions, i.e., water waves in a lakseichek acoustic waves in ractal boundary with oscillating but small amplitude.
a concert hall with irregular walls, vibrations of fluid in po- The organization of this paper is as fO”(?WS' Sec. Il de-
rous media, and oscillations of the whole earth. The asym scribes the basic concept of the BL conjecture related to
. . . " . vibrational properties of fractal drums. In Sec. Ill, the appli-
totic properties of the integrated densities of stilPOS) of o ; : X . .
: . T . cability of the conjecture for discretized lattice systems is
fractal drums, in the high frequency limit, have been dis-

) . . discussed. We argue in detail this point by illustrating a
cussed from mathematical points of vi¢#~10Q. Thus frac- square drum(Oth generatioy namely, about the Weyl-

tal drums have attracted great interest of both physicists anﬁeeley-PhanﬁlS—lﬂ asymptotic formula. The comparison

mathematicians. A conjectufg] was given that the fractal st the exact expression for the IDOS of this system with the
dimensionD; of the perimeter is relevant to the IDOS of the computed result will convince us to use the formula of Eq.

drum. This is called the Berry-LapidyBL) conjecture. The (8) for investigating the BL conjecture. In Sec. IV, we out-
BL conjecture has been numerically studied for the first timgine our numerical method, called the forced oscillator
by Sapovalet al.[6,11-13 via calculations of the IDOS of ethod, which is employed to calculate the densities of
the fractal drum with the Koch-curve boundaljoch drum)  giates and mode patterns. The method is quite powerful to
at the second generation willy=1.5. They used @ mapping yeat eigenvalue problems of very large matrices, by mapping
relation between the Helmholtz and the diffusion equationsihem onto those of lattice systems. The numerical results are

They calculated eigenfrequenci@sd their distributionand  given in Sec. V. Section VI gives summary and discussions.
the corresponding eigenfunctions of the Koch drum. Al-

though their method employed can find accurate eigenfre-

guencies and the eigenstates, only a small part of lower

eigenfrequencies and their eigenstates were obtained due to

the limitation of the CPU time. In fact, they have calculated

only 3% of all eigenmodes. In order to obtain correct insight

into the characteristics of the IDOS, the sufficient generation We consider, at first, vibrations of drums with fixed

of a fractal drum reflecting the fractality of the boundary andboundary conditior(Dirichlet condition. Let R be an arbi-

the calculation of the IDOS at high enough eigenfrequenciegrary shaped bounded region. The starting equation describ-

are necessary. ing vibrations of drums is expressed by the Helmholtz equa-
Hobiki, Yakubo, and Nakayamld4] have recently stud- tion,

ied the IDOS’s of Koch drums at the third and fifth genera-

tions by employing a simple but powerful and accurate nu-

merical method. They have calculated the IDOS in two (A+w?)u(r)=0 in R, (1)

orders of the frequency range, and found that the IDOS

Al (w) is proportional towPf with D;=1.5 in the frequency

regime higher than a characteristic frequengy This result  where o is the eigenfrequencyor w? the eigenvalug A

is valid for drums with the Koch-curve boundary. The spec-denotes the Laplacian, andr) is the scalar displacement.

Il. ASYMPTOTIC FORMULAS FOR THE SPECTRAL
DISTRIBUTION OF DRUMS WITH SMOOTH
AND FRACTAL PERIMETERS
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The Helmholtz equation(1l) appears in various fields of
physics, to describe not only propagations of electromagnetic
and acoustic waves, but also energy spectra of electronic 10°
systems since Eq1) is equivalent to the Schdinger equa- i
tion. Eigenfrequencies consist of an infinite sequence of
positive quantities. The lowest frequenay is called the
fundamental tone and higher frequencies are overtones of the
drum. The integrated density of stat¢®OS) represents the 10° |
number of eigenfrequencies of E@l) up to w, which is :

given by g
w g
lﬁx(w>=f D(w')do’. @ °
° Q 10°E 3
The density of states is defined Bfw) =2, §w—w,), where o -
&(x) is the Dirac delta function ana, the eigenfrequency. u“:’
The suffix “fix” of Eq. (2) represents the IDOS under the a

fixed boundary conditioriDirichlet condition).

Seeley[16] and Phan{17] have obtained, by extending 10" |
the Weyl's asymptotic formuldl5], the following asymp- ;
totic form of the IDOS for drums with the smooth boundary
in the high frequency limit,

S .
- 2 0 ML PRI R AT B |
(@)= 1.9 Bwt+o(w) (w—x), ©) 1010.3 102 107 10°
whereS is the area of the drum an a positive constant Frequency o
depending on a shape of the drunfiw) denotes the Landau
symbol. We call this the Weyl-Seeley-PhdiVSP asymp- FIG. 1. The differencé\l (w) for the square drum with=2000

totic formula. The first term of the right-hand side of E§)  as a function of frequency. The symboln is the number of grid
is the IDOS for a drum with the stress-free boundégu-  points at a sidé. of the square drum. Schematic illustration of the
mann conditioh in the high frequency limit. The second discretized square drum is given in the inset. We use the system of
term is due to the vanishing degree of freedom by imposinginits m=1, K=1, anda=1. The results given irta) and (b) are
the fixed boundary conditiofDirichlet condition). This term  obtained by using Egqs7) and (8), respectively. The difference
depends on the shape of the boundary and should be propdk () in (b) is proportional tow even in the higher frequency
tional to w for a one-dimensionallD) and smooth perim- regime compared with the case (@.
eter.

The WSP asymptotic formula E@) assumes the smooth lll. THE CONJECTURE FOR LATTICE SYSTEMS
boundary. However, there are many drums and resonators . :
possess?;lg irregular and structurallyydisordered boundaries, I%[quatlons(B)(jgnd (Aevassumoelz :ha;_the cti_rumtﬁon&st? of a
Berry[7] and Lapidug8—10Q] have extended the formula Eq. gon inuum Ime_ ium. Vvé nee Of |scre| 1z the con muulm
(3) to the case with a fractal boundary whose fractal dimen- rum to a lattice(or grid) system for real space numerica

sion s expressed b . Berty 7] has conjectured that the ESERTE PO 00 S B OE o it
IDOS |, (w) of a fractal drum with the fixed bounda(i- y P

. o . length, namely, a grid spacirag This length scale becomes
;g:lsgnggr}gltt'ﬁg ﬁig?]u:?egjgﬁc;hﬁmfg_"meg frequency de- relevant in the high frequency limit. At first, we extend Eqgs.
' (3) and(4) for discretized systems. The validity of this modi-
S fication will be demonstrated by calculating numerically the
lix(@)= 71— w?—B;wP+0(wPf) (w—%), (4  IDOS for a discretized square drum, for which we have the
™ rigorous dispersion relation.

wheresS is the area of the drum ar@ a positive constant L€t us consider a simple square drum. The side length of
depending on the shape of the drum. This expression i§€ Square drum is taken to he(see the inset of Fig.)1for
called the Berry-LapiduéBL) conjecture. The BL conjecture Which the dimension of the boundary beconizs=1. The

is based on the following assumptions: Vibrational modesd'Sper,S'on relation of the discretized square drum obeys the
of a drum with the stress-free boundafyeumani condi-  following form:

tion can be separated into the inside and the boundary parts,

and vibrational modes related to the boundary have the linear ) .

dispersion relation. Quite recently, Levitin and Vassiliég] ® =4(K/m)a=zxy sirf(k,al2), (5)

and Fleckinger, Levitin, and Vassilig€9] have pointed out '

that the factorB; is an oscillating function of frequency

but with a small amplitude. This will be argued in Sec. V in wherem is a mass of a lattice poink a spring constant, and
connection with our numerical results. k, the wave number along thedirection. Hereafter, we use



54 SPECTRAL CHARACTERISTICS IN RESONATORS WH'. . . 1999

the system of unitsn=1, K=1, anda=1 without loss of of frequencyQ will respond with large amplitudes in those
generality. Under thdixed boundary condition, the wave eigenmodes close to this frequency. This method enables us

numbersk, are given by to calculate in an efficient way the spectral density of states,
o eigenvalues, and their eigenvectors of very large Hermitian

ka=p—; for p=1,2,...n—2, (6)  [20,21 or non-Hermitian matrice22]. The algorithm can

n—1 treat a system with a size of the order =10 using a

computer with 1 Gbyte memory space. Such a large size
makes it possible to obtain correct insight into the spectral
densities of states of fractal drums.

Let us introduce the Lagrangian of a classical vibrational
system with unit mass of the form,

wheren is the number of grid points on the side, ies(n
—1)a (see the inset of Fig.)1Eigenfrequencies are ob-
tained by substituting the wave numbérsgiven by Eq.(6)
into Eqg. (5), and the IDOSI,(w) is calculated from the
spectral distribution of eigenfrequencies
We replace the second term of E8) by Al (w) defined N 1
by L= 2 2 ur2n_ 2 2 Dmnumun+2 FmumcogQt),
mn m

2 m

=

Al(w)= :—W 0?—l( ). 7) 11

wherem (andn) represents the grid point on the 2D drum.
The differenceAl(w) for a square drum withb=1999 y_ denotes the scalar displacement of thih site andD,,,
(namely,n=2000 is calculated by putting the rigorous result s the spring constar{the matrix elementbetween themth
for I (w) into Eq. (7). The data(@ in Fig. 1 show the fre- andnth site. The coefficienE,, is the amplitude of the ex-
quency dependence @l(w) obtained using Eq(7). The  ternal force applied to thenth site, and(Q) is the driving
difference Al (w) is not proportional tow in the frequency frequency. The first and second terms in Etyl) are the
regime higher tham~0.1. This indicates that the IDOS for kinetic energy and the potential energy of coupled harmonic
the discretized drum under the stress-free boundary conditiogscillators, respectively, and the third represents the external
is not expressed by the first terfw?/4 of Eq. (7) in this  field. Varying the frequency?, the density of states in an
high frequency regime. This arises from the fact that ourarbitrary range is calculated as folloW&0—23.
drum possesses a finite grid spacamgThus the IDOS for The Lagrangian Eq(11) without the external field yields
the discretized drum obeys the WSP conjectiEe. (3)]  the lattice dynamical equation of motion of the form
only in a very narrow frequency region.

The first term of Eq«(3) represents the IDOS for a con- d?

tinuum drum with the stress-free boundary. Therefore, we e Um(t):—; DmnUn(t). (12
replace the first term of Eq7) by the IDOSI {w) for a

discretized system with the stress-free boundary, By discretizing timet into stepsr, Eq.(12) becomes coupled

Al(®) =l jed ®) = (). (8) equations,

In the case of the discretized square drum with the stress-free i+ 1) =v0(i) = 7> Dmn(i),
boundary, the dispersion relation becomes the same with Eq. n

(5), but the wave numbers are expressed by
Up(i+1D)=u,(i)+7v,(i+1), (13
! p,7T !

Ke=p—5: for p’=012...n—1. 9 whereuv, (i) is the velocity of themth particle at timet=i7
where the integer denotes the time in units af[20]. Each
Equations(5), (6), and (9) lead the rigorous form of the displacemenu(i) and velocityv (i) can be decomposed
differenceAl (w) of Eqg. (8) for the discretized square drum. into a sum of normal modes,(\) as
The result is shown by the dataé) in Fig. 1. This shows
clearly thatAl(w) is proportional tow even in the higher . .
frequency regiméover two orders of frequency rangeom- Um(1) = ; Qu(1)em(N),
pared with the case of the data). Thus we can properly
replace the first term of the WSP asymptotic formyB
with the IDOSI 4 w) of the discretized system. Extending vm(i)=2> Py(i)en(N), (149
this idea, we claim the following relation to be the dis- A

cretized version of the BL conjecture, ] . . ]
whereQ, (i) and P, (i) are the time-dependent amplitudes

Lix(@) =l fred @) — B P1. (100  with which the modex contributes tou.,(i) andv (i), re-
spectively, and vary as ekpiw,t) as seen from substituting
Eqg.(14) into (12). The displacement(i) is set to be zero at
i =0, then the periodic forceB,, cos()7i) are imposed on

The method employed for calculations of the densities okeach site m in Eq. (13). Here F, is chosen as
stategDOS) and eigenmodes is the forced oscillator methodF ,=F, cog¢,,), where ¢, is a random quantity taking a
(FOM) [20-23. This method is based on the principle that avalue within the range €¢,,<2w, andF is a constant.
linear dynamical system driven by a periodic external force As a next step, we define the energgi) given by

IV. OUTLINE OF NUMERICAL METHOD
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1
E()=5 | 2 [vm()IP+ 2 2 Un(i)Dmatin(i) Un(T) =2 [2 Fnenm]
2sinf(Q T/2}sin{ () — w))T/2
=3 S 160, 15 (ZIET ) AR IT o 0.
) @\
(20

where the orthogonality condition between eigenvectors is
used. We have introduced the quantify(i) defined by For sufficiently large timeT, only a few eigenmodes with
E()=Q,(i)+iw,Q,(i). After a sufficiently large time- eigenfrequencies, close to{) have large amplitudes. One
interval T, &,(i) becomes from Eqg12) and(14), can accelerate the calculation by replacing the amplitude of
the periodic forceF, at each sitam by F,=u,(T). Initial
(-0 T_1 amplitudeu,(i=0) at themth site is set to be zero again,
E(T)~ 5 |E Fmem()\)] BTN (16) and we follow the time developments of EQ.3) with the
m ( ©x new external force=,,cos(7i). After p iterations of this
procedure, the amplitude,,(T) becomes
Using Egs.(15) and(16), one has the energy gained by the
UM =2, [E Fnenmj

fw)\T

external force as,

2 Sirt{ (w, — Q) T/2}

2 sin{(Q+ w,) T/2sin{(Q— w,) T/2}H]P

1
E(M=5 2 {; Fmemm]

(0x—Q)* X _
A (17) QZ_w)Z\ em()\)
(21)
The averaged value d&(T) over the random variableg,,

becomes For sufficiently largep, only a single eigenmoda;(w,,

) 2 ~()) survives such as

Fo sir{(w,—Q)T/2} -
== T)~Cepn(\1), 22
(EM)=75 2 — 5 —ny U (T)~Cen(Xy) (22

whereC is a constant.

(> D en(N)ey(\)cog ¢m)cos ) The formula for judging the accuracy of calculated eigen-
m n vectors has been given in R¢21]. The key quantity is

CFo o Si{(w,—0)T/2} S A — p 2P (T)2
45 (0y—)* (49 P w)=

, 23
S mad,

where (---) represents the random phase average and thehereu is a parameter anal,=3 D, P (T). Itis evident
terms satisfyingm=n remain in the summations with re- that, if only a single mode\; is excited, the value of
spect tom andn. For sufficiently largeT, only the modes
belonging to eigenfrequencies, within the narrow fre-
guency range nedl contribute to the sum in Eq18).

For large system siz&|, it is not necessary to average
over all possible ensembldg,,} explicitly due to the self-
average. Provided that the proper time-interVals taken,
Eq. (18) yields

TF
(EQT)="52 3 o)

7TNF %

5 D(Q), (19 &

whereD({) is the density of states for the mapped system.

Here we have used the relation §m, sir?(xT)/ (2) The fractal drum A with Dy = 3/2 (b) The fractal drum B with Dy = 5/3
7 Tx?= 6(x). The resonance widtldw is inversely propor-

tional to the timeT, as given bydw=4/T. FIG. 2. lllustrations of fractal drums. Each generator is given
The eigenmodes are calculated by the following proce- apove.(a) The fractal drum with the Koch-curve perimeter at the

dures. By applying the external ford&, cos(1ri) to the  third generationv=3. The fractal dimension of the Koch-curve is

system, the amplitude af,(i) after the time-interval can  D;=In 8/In 4=3/2. (b) The fractal drum withD{=In 32/In 8=5/3.

be written as, using Eq$12) and(14) and taking the initial  The dotted lines shown ifa) and(b) indicate the initiator§square

condition P, (i=0)=0, drum.
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TABLE |. Parameters used in our numerical simulations. Drums

A andB are illustrated in Figs. @) and(b), respectively. DrunC
is the Koch drum at the first generatier-1, which is employed for
calculating the localized edge mode.

drumA drumB drumC
D; 3/2 5/3 3/2
v 3 2 1
| 2% 24a 49a
L 3074 28322 294a
N 3474433 2 408 449 39 201
Np 59 392 98 304 1568
N, /N 0.0171 0.0408 0.0400

52(%1) becomes zero. When the excited pattern consists of

a few modes with eigenfrequencies close to the mogia
6 becomes small when the frequengyis close tow, .
Therefores(u) gives an index for the degree of accuracy.

We should stress the following advantages to compute the

DOS in terms of the FOM(i) Calculations can be performed
within an arbitrary energy range one nee(s, the energy
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FIG. 3. The IDOS'sledw) and I (w), for the drum A as a
function of frequencyw with error bars. We use the system of units

m=1, K=1, anda=1. The results show the averaged IDOS’s over
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FIG. 4. The IDOS’d (@) andl 4 (w), for the fractal drum B as
a function of frequency» with error bars, wheren=1, K=1, and
a=1. The results show the averaged IDOS’s over six se{ghgf.
The definitions of symbols are the same with those given in Fig. 3.
The differenceAl (w) is proportional tow® 8 in the frequency re-

gime higher than a characteristic frequengy.

resolution can be controlled by taking the appropriate time-
interval T, (iii) the CPU time is proportional to the system
sizeN, and(iv) the accuracy of the calculated DOS increases
with increasing the system si2é

V. NUMERICAL RESULTS

We have computed the IDOS’s of two different Koch
drums as illustrated in Figs(& and(b). The fractal dimen-
sions of boundaries in Figs.(& and (b) are D;=3/2 and
D(=5/3, respectively. The index indicates the generation
of the fractal boundary, where the total length of perimeter
increases with the generation. The symbcdsidL show the
lengths of the segment at the fractal boundary and the system
size, respectively. The lengthis taken to be larger than the
grid spacinga, namely, we have chosen the values| cds
=29 and 24 for the drums A[Fig. 2(@)] and B [Fig.
2(b)], respectively. These fractal drums consist of the grid

four sets of{¢,}. Open circles and crosses indicate the IDOS's ofPOINts ofN includingN,, sites on the perimeter. Table | gives

drums with the freéNeumanm and fixed(Dirichlet) boundary con-
ditions, respectively. Filled circles indicate the differenté(w)
which is proportional tow!® (=wPf) in the frequency regime
higher than a characteristic frequengy. In the frequency regime
lower thanw,, Al(w) does not follow the power-law dependence
P,

the parameters used in our computations.

The differenceAl(w) has been calculated from both
I edlw) and 4, (w) by using the formula Eq(8). The reso-
nance widthdw=4=/T is taken to be proportional to the
frequencyw, namely, the time-interval for our simulations
is taken as
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A 167 with the wavelengtih=2|. Sincel =29a for the drum A,w,
=s-=— (24 of this drum should become 0.153 which is calculated from
the dispersion relation. This value agrees quite well with the

This choice enables us to have a constant frequency resolGbaracteristic frequency, obtained in Fig. 3, which indi-
tion of the DOS when plotting the data in a log-log scale. Wecates, contrary to Reff7] that Eq.(10) holds when the wave-
have taken the sample average of four to six sets of randof#gngths A of vibrational excitations of a fractal drum are
variables{¢,,}. shorter than the length scalecharacterizing the fractal pe-
rimeter.
We have also computed the IDOS of the drum B with the

) i i . ) _ . _different fractal perimetersee Fig. 2b)], for which the frac-
The dispersion relation of a lattice system deviates signifiiy| dimension of the boundary B,;=5/3=1.67. In order to

cantly from the linear law in the high frequency region. Dl.Jeobtain high enough accuracy of the DOS, the time-intefval
to this reason, we evaluate the IDOS in the frequency reglmFS taken asT=4m/Sw=30mw. The calculated results are

©=1.0 as argued in Sec. lll. Figure 3 shows our numencash own in Fig. 4, where the average is taken over six sets of

results on the frequency dependence of the IDOS for th? . L g
. . A : andom variable$e,,}. The definitions of symbols in Fig. 4
drum A with the fractal dimensioD =3/2=1.5[Fig. 2a], are the same with those given in Fig. 3. Since the length of

V\{heire thed a\:erage i'r‘:’ dtiakten tr?velggg,r Sitsd{f'tr‘i' ?vpi)t?]nfr the fractal segmenit is taken to be 24 (see Table )l the
circles ang Crosses cate the S Of drums with re€. ., racteristic frequency, should become 0.185. This coin-
and fixed boundary conditions, respectively. Filled circles

with error bars are the results for the differencs(w) com- cides with the calculated value indicated in Fig. 4. The result

: . . shows thatAl () is proportional tow™® in the high fre-
uted from Eq.(8). Figure 3 gives clear evidence that the : ;
giﬁerenceAl(g)(is) progportiongl tow’® in the frequency re- quency regionw>w,. In the lower frequency regime than

ime hiaher t haracteristic. fr Hereafter " Al(w) does not follow the power-law dependengt®’.
gime higner than a characterstic frequenay. Hereaner, o important feature of the calculated results in Fig. 4 is the
we call vibrational modes of a drum with the fixed boundaryoscillating behavior of the\l (w) w.. This feature is also
“bulk modes” and modes in the boundary region “edge c

modes.” The total number of edge modes is small comparegbserved for the case of the drum A as shown in Fig. 3. This

with that of bulk modes. In fact, the degree of freedom of the’ oint will be argued later.
perimeter () is a few percent of that of the whole drum
(N) in our calculationgsee Table)l

The physical implication on the characteristic frequency We have demonstrated that EG0) holds under the con-
o, can be given by comparing the length scale of the wavedition that the wavelengths of vibrational excitations are
length\ and the segment lengthat the perimeter as follows: shorter than the length scalecharacterizing the fractal pe-
The BL conjecture is based on the assumption that vibrationdmeter. We have computed mode patterns localized near the
of a drum with the stress-free boundary can be separated infeactal boundary of a fractal drum with the stress-free bound-
the bulk and the edge modes. In addition, the assumption afry. These provide one of evidences supporting the validity
the linear dispersion relation for the edge modes is not apef the BL conjecture.
propriate. This implies that the BL conjecture is not valid in  The method employed for calculating mode patterns is the
the low frequency region such a#¢l>1. We claim that the forced oscillator methof20—23 mentioned in Sec. Ill. We
characteristic frequencw, is related to the excited mode use a Koch drum at the first generation with the stress-free

TS0 w

A. Integrated density of states

B. Mode patterns

FIG. 5. The eigenmode
with the eigenfrequency
®0=0.498 068 61 for the Koch
drum (v=1) with the stress-free
boundary condition. Large ampli-
tudes are observed at both ends of
the drum.
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, - - - - ; tion. The applicability of the conjecture for discretized sys-
tems has been argued in detail. We have used the formula
Eq. (10) for discretized drums instead of the conjecture Eqg.
(4) for continuum media. We have demonstrated the validity
of the formula(10) proposed in the present paper for the case
of a square drum with the smooth perimeter, i.e., the calcu-
lated IDOS coincides fairly well with the WSP asymptotic
formula (3). The IDOS’s of fractal drums with the fractal
dimensions of the perimeteBs;=3/2 andD;=5/3 have been
computed. The results show tHat(w) obeys Eq(10) in the
frequency regime higher thap,, wherew, is related to the
length scald characterizing the fractal perimeter. The crite-
0 T s 10 10 200 rion for the validity of Eq.(10) has become clear, namely,
X the conjecture holds for modes with wavelengthshorter
_ o than the length scalé characterizing the fractality of the
_ FIG. 6. Cross section of the mode pattern alongdiais given  parimeter. Figure 5 gives eigenmode localized at the fractal
in the inset. For the regiondx=<50, the amplitudes are very large. (stress-frepboundary of the Koch drurtv=1) with the frac-
. tal dimensionD;=3/2 of the perimeter.
boundary condition. The parameters of the drumlard9a, Recently, Levitin and Vassilief18] and Fleckinger, Lev-
L=2943, N=39201, andN,=1568 (see Table . We i and vassiliev19] have pointed out that the BL conjec-
choose the_ large number o_f grid points at th_e perimeter SUChre Eq. (4) for fractal drums is not rigorous. They have
as|=49%, in order to clarify the characteristics of eigen- g,ggested18,19 that the coefficienB; in Egs. (4) and(10)
modes. Using these values of parameters and the dispersiian oscillating function of frequenay, but the amplitude is
relation, the characteristic frequenay of the Koch drum is ey small. We have tried to reveal this behavior. The oscil-
estimated to be 0.09. The calculated result is shown in Fig. §5ti0n with small amplitudes has been observed as shown in

where the mode patiern with the eigenfrequencyrigs 3 and 4 within our numerical accuracy. The problem
»=0.498 068 61 is presented. The value of the quadlify) g ggested by Levitin and co-workdEs,19 will be crucial

introduced in Eq(23) for the judgement of the purity of the ¢,/ rther development on the present subject.

. . 76 . .
eigenmode is 0.8810 °. Figure 5 shows that the mode vi- o results are applicable to various fields of physics due
bra_tes with large _amplltudes at both ends of the drum with the generality of Eq). One example concerns with elec-
antiphase. The displacements near the boundary are largepnic states in tailor-made mesoscopic systems with fractal

than those in other regions, and the displacements decreasgimeters[24,25. Advances in nanostructure technology
toward the inside of the drum. We have plotted the amplitude,, ;e possible the manufacture of such mesoscopic systems.

of this mode in Fig. 6, where acrossiection alongXiB&is  Ejecirons confined in a 2D small region will be severely
defined in the inset is given. Forsk=50, the amplitudes  4ftected by the shape of the perimel26]. Studies on fractal

are large compared with those in the regioaS50. It should 4. ms will give an insight into electronic properties of me-
be noted that the mode vibrates sinusoidally alongytheis. soscopic systems.

These edge modes are not extended along the perimeter. This

feature is in contrast to the case of a drum with the smooth

boundary, where edge modes are extended along the perim- ACKNOWLEDGMENTS
eter.
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